
34 The Delphi Magazine Issue 68

Microsoft Visual Studio .NET:
A View From Across The Fence
by Steve Scott

Perspectives: An Introduction From The Editor

Last month, in the Editorial, I said ‘we will shortly be introducing
a new column called Perspectives...’ Well, here we are with the

first instalment!
The column is different to other parts of the magazine in three

ways. Firstly, and most importantly, it aims to give readers a wider
perspective than just Delphi and Kylix. Personally, I feel strongly that
as developers we should not become totally absorbed in the tool or
development approach we happen to be using now: we need to keep
an ear open to other technologies. We’ll be providing that informa-
tion in Perspectives.

The second thing that’s different about Perspectives is that the
authors will vary: when we cover a particular issue we aim to have
input from the person we feel can best give you the information you
need. This month, we have Steve Scott discussing Microsoft’s forth-
coming Visual Studio .NET (VS.NET for short): he writes from the view-
point of someone who is an active and committed Delphi developer,
as well as an active ad experienced user of the VS.NET beta. You will
probably have realised by now that the .NET framework and VS.NET
will bring significant change in Windows software development (and
maybe more widely, perhaps sooner than we had thought, too).

Other topics which could feature in future Perspectives instalments
include palm devices, the C# language, Java developments, other
platforms, competing tools and database technology.

Which brings me to the final thing that’s different about Perspec-
tives: you won’t find it in every issue, only when we feel there’s some-
thing important to cover. So you needn’t worry that you will be losing
out on pure Delphi and Kylix material! One of the reasons for increas-
ing the number of pages was to allow us to add more material but
maintain the same quantity of pure Delphi and Kylix articles.

Chris Frizelle, Editor (chrisf@itecuk.com)

Being given the chance to write
about Microsoft Visual Studio

in a magazine read by often fanati-
cal Delphi developers could be
viewed as either a wonderful
opportunity or a poisoned chalice.
As I write this sentence I have not
yet decided which I think it is. I
have always held the view that, as a
developer, I will use the best tool
for the job. Over the past six years
that has almost always been
Delphi. It’s a great testimony to our
beloved development tool that,
even when trying to implement
new Microsoft technologies such
as COM, MTS, ASP and ISAPI, etc,
we have still been able to say quite
honestly that we were using the
best tool. So, with Visual Studio 7,
or as it is now named Visual
Studio.NET (VS.NET), clearly on
the horizon are we going to be able
to continue in this vein?

Before we delve into the ins and
outs of VS.NET I want to comment
on the fact that I can even write
about the next incarnation of
Microsoft’s development environ-
ment when it’s not due to be
released until late this year.
VS.NET Beta 1 has been freely
available since November 2000.
There are public newsgroups for it,
frequented by the development
team themselves, as well as it being
possible for anyone to report a bug
they might find. If you compare this
to Borland’s approach to beta
programs, the difference is quite
stark. If anybody you know is on
the Delphi 6 beta they can’t even
tell you, let alone discuss the prod-
uct with you. I’m sure Borland feel
they have very good reasons for

handling software releases the way
they do, but I don’t understand
them. Although I have no connec-
tion with Microsoft at all, and in
fact virtually never use the current
version of Visual Studio, I really
feel like I am able to contribute
towards the next release of the
product and in some way help
shape the final release. Now I’m
sure I’m being really naive here,

and the chances of any feature I
might propose actually making it
into the product must be very
small indeed, yet that feeling of
being involved makes it very likely
I will buy the product when it
ships.

In total contrast, I feel like I am
currently sat here waiting for
Borland to tell me what I want in
Delphi 6. Unfortunately, percep-
tion plays a great part in the suc-
cess or failure of software releases
and, in this case, Microsoft seem to
be winning. The other problem
this leaves me with is that I can
only make comparisons between
VS.NET and Delphi 5, even though
Delphi 6 will most likely be the
shipping version of Delphi when
VS.NET finally hits the streets.

OK, so what is different about
VS.NET compared to the current
version? It’s tempting to say every-
thing. VS.NET is not a progressive
upgrade from Visual Studio 6. As
its name suggests, it is designed as



April 2001 The Delphi Magazine 35

a development environment for
Microsoft’s new .NET framework.
In fact, unless you want to use
Visual C++ (which is still not very
visual, by the way), I don’t think
you can develop a standard Win-
dows API-based application. (I do
have to exclude Foxpro from all my
conclusions, as I have no idea
where it fits into this situation.)
The fact that VS.NET unashamedly
targets the .NET framework raises
a whole load of issues; the main
one is whether you actually want to
develop for the .NET framework in
the first place.

As Delphi developers, the clos-
est thing we can compare the .NET
framework to is the VCL. Microsoft
has spent a long time (over three
years) developing a language-
neutral object wrapper around the
Windows API. This wrapper, or
framework, has also been
expanded to include memory man-
agement and exception handling,
as well as a whole host of other
goodies. In short, any language
designed to use the framework will
get immediate garbage collection
and exception capabilities, among
other things. What’s more it can
fully utilise and extend any objects
or components written in any
other .NET-compatible language.

The framework will at first be
distributed as an add-on pack for
Windows 95, 98, NT and 2000, and
will be an integral part of future
Microsoft operating systems. It is
suspected that at some time in the
future Microsoft will stop making
the Windows API public and only
allow access to the OS through the
.NET framework. With this in mind,
we have already resolved the
above issue: it’s not a matter of if
you want to develop .NET applica-
tions, but how long do you intend
to hold out before you do. This one
is a bit like the Windows 3.1 versus
Windows 95 debate we all remem-
ber so well from a few years back.
The truth is, today almost no one is
developing for Windows 3.1,
despite what they might have said
back then.

As you can see, comparing
Visual Studio .NET and Delphi 5 is
no longer reasonable, as they
target different platforms. When

.NET is released, Delphi 5 will be to

.NET what Delphi 1 became to Win-
dows 95. As I write, Borland have
made no official announcements
concerning any plans to support
the .NET framework, but a source
at Borland has told me that
‘Borland are going to be support-
ing .NET and are working closely
with MS to ensure that Borland are
able to do this’ [And yes, Mr Lawyer,
we have permission to say so! Ed].
However, until such time as they at
least make an official announce-
ment, or start supplying beta prod-
uct, anyone who sees a big future
in .NET is left with no alternative
but to examine Visual Studio.

So I’ve laid my cards on the table:
I have said that I think .NET is the
future, so what does VS.NET give
us to implement this future? The
product includes Visual Basic
.NET: totally re-engineered and not
to be compared with the existing
Visual Basic product. It also gives
us a new language called C#, which
can be described as a C++-based
language with most of the nasty
bits taken out and quite a lot of the
best bits of other languages, like
Java and Pascal, added in. Both
languages seem fully functional,
support single inheritance, events
(in the form of delegates) and prop-
erties. I have not come across any
language limitations yet, though I
have not really pushed them to the
limit either (I leave that sort of
thing to Dave Jewell).

As is the requirement with all
.NET languages, both VB and C#
produce output in what Microsoft
have called Intermediate Lan-
guage, or IL. The .NET Common
Language Runtime (CLR) then
takes the IL and produces machine
code. The upshot of all this is that
there is no discernible runtime per-
formance difference between any
.NET language, as they all use the
same final just-in-time compiler.

Choosing a language in VS.NET
really does come down to your
preference of syntax, as all the
functionality is supplied by the
framework. I’ve been mainly play-
ing with C#, which is the invention
of our old friend Anders Hjelsberg
and is also the language which the
.NET framework is written in. I’m



36 The Delphi Magazine Issue 68

going to upset quite a few people here by saying that,
if Borland leave me in a position where I have to use
some language other than Pascal, then C# is not going
to be an unpleasant experience.

Visual Studio .NET, at this moment in time, is pretty
slow and a little flaky, but it is only a Beta 1 product.
The IDE is useable, but I have to say I do prefer the
Delphi IDE. It’s not my intention to do a full review of
the IDE here, just to say again that, if I had to use it, then
it is perfectly useable and an awful lot better than
Notepad!

Obviously, VS.NET supports a load of new project
types to support the new features found in the .NET
framework. ASP.NET is a major rehashing of the previ-
ously terribly messy ASP technology. I have to say that
Microsoft are very good at rubbishing their own tech-
nology once they have a replacement for it. ASP, once
the flagship of Microsoft web development, is now
apparently considered a little cumbersome and diffi-
cult to use now that ASP.NET has arrived. Joking aside,
ASP.NET looks really good and is a definite on my list
for future implementation. The ability to write your
own server-side controls is something well worth
investigating. If you are a web developer, you must look
at this technology. Web Services are also another big
thing in .NET, and VS.NET makes developing them
pretty easy. Microsoft sees Web Services as the core of
future distributed application development. Whether
this will be the case only time will tell but, in the mean-
time, I can think of loads of places where I could
implement them.

Up until now I have mainly been concentrating on the
new web features available in VS.NET, of which there
are many. It would be a mistake, however, to believe
that .NET is only about the internet. The .NET frame-
work supplies a whole host of components for tradi-
tional single-tier and n-tier development. The IDE, as I
said, is still a little clunky (like VB) when building
forms, but the good news is that the day of the ActiveX
control is finally over.

Just as we can extend the VCL in Delphi by develop-
ing our own components, so can we now do exactly the
same thing in VS.NET. It is rather impressive, actually.
You can inherit from a standard .NET class and extend
it using VB, and later inherit from your new VB class in
C#. When you debug it, the debugger will step through
both the VB and C# code. Language really is no longer a
barrier in VS.NET. My only disappointment, so far, is
that we don’t have the source for the .NET framework
itself. I’m not sure if it will be released, but it would be
nice if it was. Many traditional Microsoft tool users are
obviously raving about features which us Delphi devel-
opers have had for some years, but it was obvious that
eventually Microsoft would catch up on some of these
things.

In summary, despite a whole raft of improvements,
VS.NET still looks and feels like Visual Studio (but
remember that this is beta software: who knows what
might happen between now and the final release). The
applications it can produce, however, are of a new
breed and way ahead of the traditional Windows

applications which we can currently develop using
Delphi.

For the past six years, in my opinion, there has been
no viable or realistic alternative to Delphi as a general
Windows development tool. Now, with the world of
.NET rushing headlong at us, I have to ask whether
there’ll be a viable alternative to VS.NET. I do hope that
Borland have properly woken up to this new era and
have not been too distracted by this interesting but (in
my view) commercially questionable Linux thing.

I will develop .NET applications and, if I have to, I will
use VS.NET, but I’d rather see Delphi.NET. The trouble
is, with Microsoft releasing this technology to the
developer so early, it is going to feel like it’s been
around for a while even before it is released. This
means that Borland really have to get to work fast. I’ll
say it again: fast. We have already seen, with Paradox
and dBASE for Windows, what happens to develop-
ment products that arrive too long after their Microsoft
competitors.

Steve Scott is CTO of Ascotfirst.com, based in
Gloucestershire and Ireland. He has worked with
Delphi since its release and not only uses it as his main
development tool, but regularly trains others in its
delights. In recent years, he has specialised in web de-
velopment as a developer, trainer and consultant. He
also acts as a UK Borland User User Group Technical
Leader and resident commentator. You can email
Steve at steve.scott@ascotfirst.com


	Perspectives: An Introduction From The Editor

